
Word Embeddings and Length Normalization
for Document Ranking

Sannikumar Patel, Markus Hofmann, and Kunjan Patel

Abstract—Distributed word representation techniques have
been effectively integrated into the Information Retrieval
retrieval task. The most basic approach to this is mapping
a document and the query words into the vector space and
calculating the semantic similarity between them. However, this
has a bias problem towards documents with different lengths,
which rank a small document higher compared to documents
with larger vocabulary size. While averaging a document by
mapping it into vector space, it allows each word to contribute
equally, which results in increased distance between a query
and the document vectors. In this paper, we propose that
document length normalization should be applied to address
the length bias problem while using embedding based ranking.
Therefore, we have presented an experiment with traditional
Length Normalization techniques over, word2vec (Skip-gram)
model trained using the TREC Blog06 dataset for ad-hoc retrieval
tasks. We have also attempted to include relevance signals
introducing a simple Linear Ranking (LR) function, which
considers the presence of query words in a document as evidence
of relevancy while ranking. Our combined method of Length
Normalization and LR significantly increases the Mean Average
Precision up to 47% over a simple embeddings based baseline.

Index Terms—Word embeddings, neural information retrieval,
distributed word representations, Word2Vec.

I. INTRODUCTION

MATCHING semantically similar documents to a query
is a core challenge in ad-hoc retrieval. For large scale

search engines, this problem does not seem too complicated,
as it is possible to identify similar documents by considering
user behavioral data such as clicks and hyperlinks as
ranking measures [1]. However, for many other Information
Retrieval (IR) tasks, it is quite challenging to identify a
relevant set of documents and rank them correctly. Current
methods for relevancy matching are mainly based on various
term-frequency based approaches. However, these methods fail
to correctly identify relevant matches whenever a document
contains the query words without being relevant, or it is using
different vocabulary. These existing methods for similarity
matching measure a count of query words in the set of
documents.

BM25 is such a traditional model that considers query count
as evidence of similarity in the document [2]. The main idea

Manuscript received on April 27, 2019, accepted for publication on August
12, 2019, published on December 30, 2019.

The authors are with the Technological University Dublin, Ireland
(e-mail: Patel.Sannikumar@mytudublin.ie, Markus.Hofmann@tudublin.ie,
kunjanpatel@hotmail.com).

behind this model is to consider a count of query words
in a document as evidence of similarity, whereas non-query
words are less useful for ranking. However, this model is less
useful when looking for similarity in semantically different
documents.

Addressing this problem requires a set of techniques that
consider word semantics at the root and not solely depend
on term-frequency. One such semantically diverse method is
Distributed Word Representation, which captures a precise
semantic word relationship by learning high quality distributed
vector representations [3]. Distributed Word Representations
are based on the idea of statistical language modeling and
feature learning where words or phrases from the vocabulary
are mapped to vectors of real numbers [4], [3]. A Skip-gram
and Continues Bag of Word (CBOW) are examples of such
a method. These methods use Neural Network models to
learn vector representation of words from unstructured text
data [4]. The main objective of these models is to find word
representations that are useful for predicting the surrounding
words in a sentence or context. Vectors generated by this
model are useful when considering the semantic similarity
between words or documents. For this reason, the Neural
Network-based Distributed Word Representation approaches
are widely used in Natural Language Processing (NLP)
tasks such as automatic question answering and machine
translation [5], [6]. However, after observing its success and
usefulness in a wide range of NLP tasks, some studies have
started utilizing it for query-document similarity matching in
ad-hoc retrieval [7], [8], [9], [10], [11]. The core idea is
to map all document terms against query terms in a shared
semantic space and formulating a similarity score by applying
measuring techniques such as cosine similarity or euclidean
distance. Therein it gives a relevancy score between query and
document, which later can be used to rank documents [8].

In document ranking, we wish to reasonably rank documents
without biasing them based on different factors such as its
length, vocabulary size, the occurrence of query word, etc. In
a traditional term-frequency based ranking systems, there are
plenty of ways for rewarding and penalizing documents based
on such specific parameters. One such inevitable approach
is the normalization of the document’s length. The length of
target documents is one of the most significant factors which
considerably affects its ranking [12], because the same term
may repeatedly occur in long documents. For example, in a
document about a dog that has 1,000 terms, it is more likely to
have a frequent occurrence of dog, than a document with just

57 POLIBITS, vol. 60, 2019, pp. 57–65https://doi.org/10.17562/PB-60-7

IS
S

N
 2395-8618



300 terms. This will help documents with increased length to
being ranked first even if it is not necessarily relevant to the
query.

In the contrary, higher ranking of long documents in
term-frequency based approaches, are usually ranked lower in
embeddings based methods, because with a higher number of
terms in the document its centroid is also likely to be sparse
(as every word in document contributes equally) which results
in increased distance between query vector and centroid. The
proof is shown in Fig. 1a where long documents are ranked
lower despite being relevant (red * in the figure) to the query.
However, after normalization, the size of the document gets
decreased as additional noisy terms are removed, and as a
result, relevant documents are ranked higher.

Fig. 1b shows how relevant documents are pushed forward
after length-normalization. The main aim of this study is
to evaluate whether it is possible to reduced length biased
ranking in the embedding approach by applying traditional
document normalization techniques. Therefore, we present an
experiment with two normalization techniques over the Blog06
dataset [13]. Moreover, for evaluation purpose, we have used
Mean Average Precision (MAP). In subsequent sections, we
discuss the methodology and a set of experiments performed
over the embeddings space model and Length Normalization
methods. Then we discussed the results, followed by our
conclusion.

II. RELATED WORK

Word embeddings learned unsupervisedly have been
surprisingly successful in many NLP tasks. In fact, in many
NLP architectures, they have almost completely replaced
traditional distributed feature techniques such as Latent
Semantic Analysis (LSA) [14]. For many years vector space
models have been used in word semantics related tasks and
evolved over-time. Latent Dirichlet Allocation (LDA) and LSA
are example of models used extensively before the invention
of neural word embeddings [15], [14].

A foundation for neural word embeddings were established
after the introduction of a unified architecture for NLP [16].
However, term word embeddings appeared first in 2003 when
researchers presented a study training joint neural language
models [17]. The Neural Networks based Skip-gram and
CBOW model introduced in 2013 made word embeddings
popular among the NLP community, and a toolkit of this
model called word2vec was made available [4]. Despite being
so popular, one major downside of word2vec is dealing with
terms missing in embedding. To address this problem, an
extension to this called FastText was introduced. In contrast
to word2vec, FastText treats each word as a composition
of character n-grams [18]. Further, researchers released
the co-occurrence matrix-based model, signaling that word
embedding has reached the mainstream in NLP [19]. After
this, many advanced embeddings models have been invented
using Neural Networks, overcoming different problems such
as missing words and the context of words [20], [21].

However, the earliest study with word embedding for IR
was anticipated for retrieval and clustering experiments in
which the traditional topic model was used to calculate word
embeddings [22]. Usually, strategy for using word embeddings
in IR involves deriving a dense vector representation for
the query and document terms from embedding space, and
then an average of the derived vectors is used as document
vector to measure semantic similarity between them, which is
relatively easy and popular in the community [7], [8]. After
an introduction of word embeddings for IR tasks, it has grown
beyond what can be concisely described here. Especially,
word2vec saw wider adoption in the community [23],
[24], [25], [26]. Further, in another study, the impact of
word embeddings on scoring in practical IR has evaluated
extensively by re-weighting terms using Term-Frequency
scores and re-ranking documents based on Word Mover
Distance (WMD) [27], [28]. In an attempt to ad-hoc retrieval,
studies has also presented experiments with multiple vector
spaces (know as IN and OUT) available in word2vec [4], [25].

In which, they tried to map a query and document terms in
different vector spaces (such as query into IN and document
into OUT) and then ranked them based on cosine similarity
scores [25].

However, word embeddings are not just used for similarity
matching between query and document some studies have
demonstrated that word embeddings such as word2vec and
GloVe, trained globally, can be used for query expansion [29].
In another similar study, the author has introduced an Artificial
Neural Network classifier to predict the usefulness of expanded
query terms over word embeddings. They concluded that terms
selected by the classifier for expansion significantly improve
retrieval performance [30]. Further, instead of just averaging
word vectors, a generalized language model has constructed
to derive transformation probabilities between words by using
word embeddings, and it showed significant improvement over
language model baselines [24]. Beyond this, few studies have
also explored learning embeddings by utilizing clickthrough
and session data [31], [32]. We can say concisely that, with the
new development in Neural Networks, word embeddings are
further improving, opening new possibilities for its application
to IR tasks.

III. METHODOLOGY

In this section, we first give a formal introduction to
the distributed word representation techniques and Document
Length Normalization. Then, we present our embedding space
model using Length Normalization and Linear Ranking for
document ranking.

A. Distributed Word Representation

Many traditional frequency-based word representation
techniques such as Term Frequency - Inverse Document
Frequency, and co-occurrence matrix, are less efficient to
capture word semantics. Therefore, its applicability is less

58POLIBITS, vol. 60, 2019, pp. 57–65 https://doi.org/10.17562/PB-60-7

Sannikumar Patel, Markus Hofmann, Kunjan Patel
IS

S
N

 2395-8618



(a) Large documents are ranked lower in simple embedding based approach.

(b) Ranking improves with length-normalization as large documents are pushed forward.

Fig. 1. Projection of initial12K ranked documents along with their length before normalization and after normalization while using the embedding space model
for ranking.(red [*] denotes a relevant document to the selected query).

effective for document ranking as it does not preserve semantic
relations, resulting in a loss of useful information. However,
to deal with this problem, the researchers have started
using distributed representation based CBOW and Skip-gram
techniques, which preserves word semantics. So far, these
techniques have outperformed in various NLP tasks.

The widely used Skip-gram and CBOW are the models
in this category that learns word embeddings based on the
probability concept. Such as predicting the occurrence of
a word around other words in a fixed-length window. In
CBOW, the word in a window serves as an input and then

the model attempts to predict context words. Opposite to this,
a Skip-gram model attempts to achieve the reverse of what
the CBOW model does by predicting a context from a given
set of target words [4]. Even though CBOW and Skip-gram
use different formulation techniques, they are simple Neural
Networks with a single hidden layer to perform a particular
prediction task based on sentence semantics. Weights learned
in this hidden layer are called vectors, and each vector in the
layer is associated with a single word representing the context
of the word, which is also called embeddings. In general, word
embeddings are used in a wide range of NLP tasks such as

59 POLIBITS, vol. 60, 2019, pp. 57–65https://doi.org/10.17562/PB-60-7

Word Embeddings and Length Normalization for Document Ranking
IS

S
N

 2395-8618



(a) Without length-normalization, query and centroid
are mapped far from each other in vector space.

(b) With length-normalization, query and centroid get
closer.

Fig. 2. The two dimensional PCA projection of embeddings for the document
relevant to the query. The query and a centroid are labeled to show the
difference in distance between them, prior and after the Length Normalization.

binary classification, question answering, machine translation,
etc. However, in this paper, we use it for query-document
similarity matching by using its unique property of formulating
document meaning.

For all experiments in this paper, we have used vectors
generated by the Skip-gram model as embeddings to measure
the similarity between query and document. However, the
proposed ranking model can work with the vectors generated
by the CBOW method as well. A comprehensive introduction
to CBOW and Skip-gram models is outside the scope of this
study, but more details can be found in [4].

B. Document Length Normalization

As discussed in the previous section, the length of the
document influences its ranking, as it allows each word in
the document to contribute equally rather than their actual
relevancy to the query. Therefore, this leads to an unreasonably
higher ranking of short documents and lower-ranking of
important documents. The large documents are profoundly

affected as with extended vocabulary, it generates centroids,
which mapped far from a query in the actual vector space.
Fig. 2a shows how the query word and centroid is mapped on
distance, compared to Fig. 2b where distance is reduced after
normalization.

Therefore, to counter this problem, we normalize the length
of documents before calculating a centroid as it removes
unnecessary terms, which help in reducing bias among
documents with different lengths.

We have applied two different normalization techniques
discussed in subsequent sections.

1) Cosine Normalization: Cosine Normalization is a widely
used method in the vector space model [12]. It addresses the
two main problems, higher tfs and the number of terms in the
document at a time. With increased individual term frequency
for wi it increases its tf ∗ idf value, which increases the
penalty on the term weights. As can be seen in Equation 1, the
Cosine normalization is calculated using square root of each
term frequency where, wi is the tf ∗ idf weight for a term i:√

w1
2 + w2

2 + w3
2 + ....+ wi2. (1)

Also, if the document has more terms, the number of
individual weights in the Cosine factor (t in the above formula)
increases, yielding a higher normalization factor.

When classifying documents into various categories, Cosine
normalization tends to favor retrieval of short documents
but suppresses the long documents [12]. So, to address this
problem, Pivoted Normalization is suggested.

2) Pivoted Normalization: The Pivoted normalization
scheme is based on the principle that the probability of
retrieval of a document is inversely related to the normalization
factor used in the term weight estimation for that document.
The higher the value of the normalization factor for a
document, the lower chance of retrieval for that document.
This relationship suggests that to boost the chances of retrieval
for documents of a certain length, we should lower the value of
the normalization factor for those documents, and vice-versa.

Figure 3 illustrates the basic idea of Pivoted normalization.
In which, the point where the retrieval and relevance curves
cross each other is called the pivot. The documents on one side
of the pivot are generally retrieved with a higher probability
than their relevance probability, and the documents on the
other side of the pivot are retrieved with a lower probability
than their probability of relevance. A more detail explanation
can be found in [12]. However, here we include an explanation
of the formula for Pivoted Normalization p:

p = (1.0− slope) ∗ pivot+ slope ∗ old_norma, (2)

where, old_norma is a normalized vector to its unit length and
parameters slope and pivot are selected after cross-validation.

While using pivoted normalization, the new term weight Tw
for each term T in the document can be written as:

60POLIBITS, vol. 60, 2019, pp. 57–65 https://doi.org/10.17562/PB-60-7

Sannikumar Patel, Markus Hofmann, Kunjan Patel
IS

S
N

 2395-8618



Fig. 3. Pivoted Normalization: The normalization factor for documents for which P (retrieval) > P (relevance) is increased, whereas the normalization
factor for documents for which P (retrieval) < P (relevance) is decreased [12].

Tw =
tf.idf

(1.0− slope) ∗ pivot+ slope ∗ old_norma
. (3)

Both normalization techniques discussed above generate a
term-frequency score, which signifies the importance of the
word in a document. We use this score as a parameter that
serves as a threshold, so any word with the value less than
a threshold (min_x) is removed from the document before
calculating a centroid. In our study, the optimum value for
min_x is selected after parameter switching between values
0.01 to 0.1.

In Fig. 2, it can be seen that the cosine distance between a
query and the centroid is shorter for normalized document.
We are not discussing both normalization techniques
comprehensively in this study, but more relevant information
can be found in [33], [12].

C. Embedding Space Model

As discussed earlier, differentiating whether a document
merely contains a query word or is genuinely relevant to the
query topic is a significant challenge. We attempt to address
this problem by utilizing word embeddings with a similar
approach to [25], wherein a centroid is calculated first for
a document, and cosine distance between the query vector
and centroid is considered as a similarity measure. However,
we also cannot ignore the fact that the presence of a query
word in the document is also a piece of strong evidence for
relevancy, and embedding space models are weak rankers in
the long run [25]. We define a simple ranking function that

takes query presence into account while ranking:

sim(Q,D) = L+ cos( ~Q, ~D), (4)

where:

L =
∑
qiεQ

cos( ~Q, ~D).|qi|εD
|D|

, (5)

where:

cos( ~Q, ~D) =
1

|Q|
∑
qiεQ

qi
TD

||qi||||D||
, (6)

where:

D =
1

|D|
∑

diεN(D)

~di
||D||

, (if di > min_x), (7)

where, N(D) is a length-normalization for document D and
min_x is a threshold value.

Here, cos( ~Q, ~D) is an absolute relevancy score between
query Q and document D calculated using cosine similarity
across each query term qi and centroid D. The value of D is
the mean of all word vectors in document D, which serves as
single embedding. A function N is applied on document D
before calculating centroid D. The N is a length-normalization
function such as Pivoted or Cosine.
L serves as linear ranker which considers a count of query

term qt in document D and multiplies it with the cosine score

61 POLIBITS, vol. 60, 2019, pp. 57–65https://doi.org/10.17562/PB-60-7

Word Embeddings and Length Normalization for Document Ranking
IS

S
N

 2395-8618



Fig. 4. The architecture of the embedding based model to rank
query-document based on length normalization, word embeddings, and linear
ranking.

cos( ~Q, ~D). The reason behind considering a cos( ~Q, ~D) score
in a L is to control it from over-ranking documents with
multiple query terms but no actual relevancy. In sim(Q|D)
linear ranking component is completely ignored if the query
count is 0, and in such a case, only the cosine score is
considered to decide document rank.

Fig. 4 shows a graphical representation of the proposed
model, in which the query and document similarity score is
generated by a stack process of length-normalization, inferring
embeddings, and ranking. A cosine score is used as a similarity
measure, later combined with the linear score as shown
in Equation 5. The next section presents the experiments
with four different embedding spaces along with Length
normalization and Linear Ranking.

IV. EXPERIMENTS

We compare the performance of normalized ranking
function with a baseline based on word2vec, which is not
utilizing any normalization techniques beforehand. We have
also utilized the Dual Embedding Space Model with additional
experiments [25]. We have not performed any assessment of
our approach over any other term-frequency based baselines,
as our primary goal is to study the impact of document
length and linear ranking on top of simple embeddings based
methods.

In our experiments, we considered every document in the
dataset as a candidate for each query, which is aligned with the
traditional approach of IR, where the model needs to retrieve
a relevant set of documents from a single collection.

A. Datasets

We have used the TREC Blog06 dataset for experi-
ments [13]. The Blog06 dataset is a collection of Blog feeds,
Permalinks, and Homepage documents covering a wide area of
topics such as news, sports, politics, health, and entertainment.
The University of Glasgow collected this dataset for 11 weeks
from December 2005 to February 2006. The combined size of
collected feeds and permalinks documents is around 3 million.
For assessment purposes, a set of 50 queries with a relevant
judgment has also provided with the dataset.

B. word2vec Model

We trained a Skip-gram based word2vec model with
parameter settings of 200 dimensions, 100-word count,
windows size of 10, and negative sampling of 5. We used
around 500,000 Blog06 feed documents for training. Before
training, we performed cleaning by removing unnecessary
HTML tags and stop words. We also normalized cleaned text
by lower-casing all text content and replacing tokens such
as “UK” with “england” and “US/USA” to “united states of
america”. Moreover, we also stripped out non-English text
from documents and eliminated documents with non-English
content. There are two variants of the word2vec model,
Skip-gram and CBOW. However, we train the Skip-gram
model only considering the applicability of the proposed
approach over the CBOW model also, as both models produce
qualitatively and quantitatively similar embeddings.

C. Length Normalization and Linear Ranking

Document Length Normalization is a core component
of our ranking function. While measuring the cosine
similarity between document centroid and query vector, we
first normalized it with Pivoted or Cosine methods. In
Pivoted normalization, we run our experiments on multiple
combinations of Pivot and Slope value to obtain an absolute
threshold. Fig. 5 shows how MAP varying at the various
Pivot-Slope combinations. Also, to provide a more subjective
baseline, we run the same set of experiments using the Cosine
Normalization method.

During the experiment with Pivoted Normalization, the
min_x parameter was set to 0.05. For Cosine, we used 0.05 in
D-OUT + Q-OUT and D-OUT + Q-IN. For D-IN + Q-IN and
D-IN + Q-OUT, we have used 0.1.

Experimenting with different min_x values makes sense
as each embedding space generates different sets of vectors
and so its interaction gives different results. Moreover,
we have also implemented various min_x combinations in
the Pivoted Normalization approach, selecting 0.05 as a
threshold after parameter switching. We have not assessed a
min_x parameter comprehensively. However, this parameter is
completely dynamic, and its value depends on the vocabulary
size of the dataset. Therefore, parameter switching is required
to determine the optimal threshold.

62POLIBITS, vol. 60, 2019, pp. 57–65 https://doi.org/10.17562/PB-60-7

Sannikumar Patel, Markus Hofmann, Kunjan Patel
IS

S
N

 2395-8618



Fig. 5. MAP trend when tweaking Pivote/Slope values. Best results achieved with values between 1/1.50 to 1/2.00.

In our core ranking function, one of the parameters is the
count of query words in the document, which is considered
strong evidence of relevancy. We conducted experiments,
including this parameter set, which improved the overall MAP
considerably. Throughout all of our experiments related to
Pivoted Length Normalization, including LR, we have used
value 1/1.80 for Pivot and Slope.

D. IN - OUT Embeddings Space

The CBOW and Skip-gram models of word2vec contains
two separate embedding spaces (IN and OUT). As shown in
Figure 6, these embedding spaces are a set of weights from
different layers. Weights for input to hidden layer are called IN
embedding, and weights for hidden to output layer are called
OUT embeddings [4]. By default, word2vec discards OUT
embeddings at the end of the training. However, in this study,
we keep both weights to utilize them as embedding and infer
vectors from cross embedding spaces. Because, relevant few
studies have found that words that appear in similar context get
pushed closer to each other within IN and OUT embedding
space, therefore cosine similarities in IN-IN and OUT-OUT
embeddings are higher for words that are typically similar,
whereas in IN-OUT cosine similarities are higher for words
that often co-occur in training corpus [25].

With the motivation from the above study, we experimented
with four different embedding space variants, called IN-IN,
IN-OUT, OUT-OUT, and OUT-IN. For example, in the
IN-IN approach, vectors for query words are taken from
IN embedding, and vectors for the document are extracted
from OUT embeddings. Similarly, vectors for query words are
taken from IN embeddings and document words from OUT
embeddings in the IN-OUT approach.

In general, IN-IN and OUT-OUT embeddings are likely
to behave similarly [25]. However, in experiments, we saw
further improvement in results with OUT-OUT combination
outperforming any other combinations.

V. RESULTS

We performed Length Normalization based evaluation on
different combinations of embedding space, as presented in

Fig. 6. The architecture of the Skip-gram model. IN and OUT are the two
matrices of weight learned during training and corresponded to the IN and
OUT embeddings.

Table I. We ran our experiment using a set of 48 queries
out of 50 from the Blog06 dataset, ignoring two queries as
an embedding for them was missing. We have significantly
improved over-all baselines with Length Normalization, as
shown in Table I. Combined approach of LN and LR
improved performance significantly in each combination of
embedding spaces. The combination of D-OUT + Q-OUT
overall performed well with a MAP improving to 0.24
and 0.26 in Cosine and Pivoted Normalization. Interestingly,
MAP in each combination of embedding space increases
significantly with the LN function. However, the average
difference between LN and LR is notably lower.

The Pivoted Normalization outperformed all other methods
in terms of MAP. However, while checking its effect on the
individual query, we have noticed an unstable trend with
different Pivot and Slope combinations, which is shown in
Fig. 7. The possible explanation to these dissimilarities is
the termination of essential words from the document during

63 POLIBITS, vol. 60, 2019, pp. 57–65https://doi.org/10.17562/PB-60-7

Word Embeddings and Length Normalization for Document Ranking
IS

S
N

 2395-8618



TABLE I
MAP RESULTS COMPARING LENGTH NORMALIZATION (LN) AND LINEAR RANKING (LR) WITH BASELINE. LN, ALONG WITH LR USING D-OUT +

Q-OUT, PERFORMS SIGNIFICANTLY BETTER OVER ALL BASELINES. THERE IS ALSO A SIGNIFICANT IMPROVEMENT OVER BASELINE, EVEN WITHOUT
THE LR COMPONENT.

Embedding Space Baselines LN LN + LR
Simple LR Cosine Pivoted Cosine Pivoted

D-IN + Q-IN 0.09 0.10 0.16 0.21 0.18 0.23
D-IN + Q-OUT 0.10 0.08 0.19 0.22 0.20 0.22
D-OUT + Q-OUT 0.20 0.21 0.24 0.26 0.30 0.31
D-OUT + Q-IN 0.13 0.13 0.16 0.19 0.21 0.20

Length Normalization. Tweaking parameter min_x can solve
this problem to some extent.

Considering a count of query words in the document is
also a significant factor. We performed a set of experiments
with a linear ranking over embeddings space combined
with normalization techniques (Table I). Improvement with
LR is not significant in a combination of each embedding
space. However, it has performed well with D-OUT and
Q-OUT when combined with LN. In Table I with D-OUT
& Q-OUT, we achieved a MAP of 0.31 with Pivoted Length
Normalization and LR, resulting in an improvement of approx.
47% over aligned baselines.

We have not reported any experiments using term-frequency
based methods such as BM25, as our primary goal is to study
the possible impact of Length Normalization over embedding
based methods. Instead, we used an embedding based method
without normalization as our baseline.

VI. CONCLUSION

In this paper, we investigated the problem of lower-ranking
of long documents in embeddings based methods. We
presented a word2vec based embedding model with Length
Normalization of documents and performed experiments
with two different normalization techniques, Cosine and
Pivoted, and found that Pivoted normalization improves MAP
significantly. Based on our results, we also cannot ignore the
fact that the presence of the query term in the document is
strong evidence of relevancy, and combining it with LN can
improve the ranking. To implement this idea, we have also
applied LR along with LN. With these combined techniques,
we achieved up to 47% improvement over baseline.

However, Length Normalization can cause a change of
Average Precision for an individual query when altering Pivot
and Slope values. One possible reason for this could be the
loss of essential terms after normalization as it considers
term-frequency and not a semantic relation.

REFERENCES

[1] P. B. Richard Baeza-Yates and F. Chierichetti, “Essential web pages are
easy to find,” Proceedings of the 24th International Conference on World
Wide We, vol. Pages 97-107, 2015.

[2] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
BM25 and beyond,” Foundations and Trends in Information Retrieval,
vol. 3, no. 4, pp. 333–389, Apr 2009.

Fig. 7. Inconsistency in AP for individual queries while attempting to
normalize documents by tweaking pivot & slope values.

[3] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Atlanta,
Georgia, Jun. 2013, pp. 746–751. [Online]. Available: https://www.
aclweb.org/anthology/N13-1090

[4] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,”
in Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’13, USA, 2013,
pp. 3111–3119. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2999792.2999959

[5] Y. Qi, D. Sachan, M. Felix, S. Padmanabhan, and G. Neubig, “When
and why are pre-trained word embeddings useful for neural machine
translation?” Association for Computational Linguistics, pp. 529–535,
Jun. 2018. [Online]. Available: https://www.aclweb.org/anthology/N18-
2084

[6] Y. Shen, W. Rong, N. Jiang, B. Peng, J. Tang, and Z. Xiong, “Word
embedding based correlation model for question/answer matching,”
CoRR, vol. abs/1511.04646, 2015.

[7] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” CoRR, vol. abs/1405.4053, 2014. [Online]. Available:
http://arxiv.org/abs/1405.4053

[8] D. Roy, “Word embedding based approaches for information retrieval,”
Seventh BCS-IRSG Symposium on Future Directions in Information
Access, pp. 1–4, 2014.

[9] H. Zamani and W. B. Croft, “Embedding-based query language
models,” in Proceedings of the 2016 ACM International Conference
on the Theory of Information Retrieval, ser. ICTIR ’16, New
York, NY, USA, 2016, pp. 147–156. [Online]. Available: http:
//doi.acm.org/10.1145/2970398.2970405

[10] ——, “Estimating embedding vectors for queries,” in Proceedings of
the 2016 ACM International Conference on the Theory of Information
Retrieval, ser. ICTIR ’16, New York, NY, USA, 2016, pp. 123–132.
[Online]. Available: http://doi.acm.org/10.1145/2970398.2970403

[11] G. Zuccon, B. Koopman, P. Bruza, and L. Azzopardi, “Integrating
and evaluating neural word embeddings in information retrieval,” in
Proceedings of the 20th Australasian Document Computing Symposium,
ser. ADCS ’15, New York, NY, USA, 2015, pp. 12:1–12:8. [Online].

64POLIBITS, vol. 60, 2019, pp. 57–65 https://doi.org/10.17562/PB-60-7

Sannikumar Patel, Markus Hofmann, Kunjan Patel
IS

S
N

 2395-8618



Available: http://doi.acm.org/10.1145/2838931.2838936
[12] A. Singhal, G. Salton, M. Mitra, and C. Buckley, “Document length

normalization,” Information Processing and Management, vol. Volume
32, Issue 5, 1996.

[13] I. Ounis, C. Macdonald, M. de Rijke, G. Mishne, and I. Soboroff,
“Overview of the TREC 2006 blog track,” Proceedings of the Fifteenth
Text Retrieval Conference, TREC 2006, 01 2006.

[14] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” The
Journal of Machine Learning Research, vol. 3, pp. 993–1022, Mar. 2003.
[Online]. Available: http://dl.acm.org/citation.cfm?id=944919.944937

[16] R. Collobert and J. Weston, “A unified architecture for natural
language processing: Deep neural networks with multitask learning,”
in Proceedings of the 25th International Conference on Machine
Learning, ser. ICML ’08, New York, NY, USA, 2008, pp. 160–167.
[Online]. Available: http://doi.acm.org/10.1145/1390156.1390177

[17] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” The Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944966

[18] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[19] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. [Online]. Available: http://aclweb.org/anthology/D14-1162

[20] J. Devlin, M. C. ands Kenton Lee, and K. Toutanova, “BERT: pre-
training of deep bidirectional transformers for language understanding,”
CoRR, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/
abs/1810.04805

[21] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” CoRR,
vol. abs/1802.05365, 2018. [Online]. Available: http://arxiv.org/abs/
1802.05365

[22] S. Clinchant and F. Perronnin, “Aggregating continuous word
embeddings for information retrieval,” Proceedings of the Workshop
on Continuous Vector Space Models and their Compositionality, pp.
100–109, 2013.

[23] S. Balaneshin-kordan and A. Kotov, “Embedding-based query expansion
for weighted sequential dependence retrieval model,” in Proceedings

[29] F. Diaz, B. Mitra, and N. Craswell, “Query expansion with
locally-trained word embeddings,” CoRR, vol. abs/1605.07891, 2016.
[Online]. Available: http://arxiv.org/abs/1605.07891

of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’17, New
York, NY, USA, 2017, pp. 1213–1216. [Online]. Available: http:
//doi.acm.org/10.1145/3077136.3080764

[24] D. Ganguly, D. Roy, M. Mitra, and G. J. Jones, “Word embedding
based generalized language model for information retrieval,” in
Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR
’15, New York, NY, USA, 2015, pp. 795–798. [Online]. Available:
http://doi.acm.org/10.1145/2766462.2767780

[25] B. Mitra, E. T. Nalisnick, N. Craswell, and R. Caruana, “A
dual embedding space model for document ranking,” CoRR, vol.
abs/1602.01137, 2016. [Online]. Available: http://arxiv.org/abs/1602.
01137

[26] D. Roy, D. Ganguly, M. Mitra, and G. J. F. Jones, “Representing
documents and queries as sets of word embedded vectors for
information retrieval,” CoRR, vol. abs/1606.07869, 2016. [Online].
Available: http://arxiv.org/abs/1606.07869

[27] M. K. Huth2 and Christopher, “Evaluating the impact of word
embeddings on similarity scoring in practical information retrieval,”
Zenodo, pp. 585–596, 2017.

[28] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “WMD:
From word embeddings to document distances,” Proceedings of The
32nd International Conference on Machine Learning, vol. 37, pp. 957–
966, 2015.

[30] A. Imani, A. Vakili, A. Montazer, and A. Shakery, “Deep neural
networks for query expansion using word embeddings,” CoRR, vol.
abs/1811.03514, 2018. [Online]. Available: http://arxiv.org/abs/1811.
03514

[31] M. Grbovic, N. Djuric, V. Radosavljevic, and N. Bhamidipati, “Search
retargeting using directed query embeddings,” in Proceedings of the
24th International Conference on World Wide Web, ser. WWW ’15
Companion, New York, NY, USA, 2015, pp. 37–38. [Online]. Available:
http://doi.acm.org/10.1145/2740908.2742774

[32] P.-S. Huang and J. Gao, “Learning deep structured semantic
models for web search using clickthrough data,” ACM
International Conference on Information and Knowledge
Management (CIKM), October 2013. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/learning-deep-
structured-semantic-models-for-web-search-using-clickthrough-data/

[33] A. W. Gerard Salton and C.S.Yang, “A vector space model for
information retrieval,” Journal of the American Society for Information
Science, vol. 18(11), pp. 613–620, November 1975.

65 POLIBITS, vol. 60, 2019, pp. 57–65https://doi.org/10.17562/PB-60-7

Word Embeddings and Length Normalization for Document Ranking
IS

S
N

 2395-8618


